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A study is carried out to investigate unsteady concentration polarization in laminar ultrafiltration in a 

cylindrical channel as a funct ion o f  the selective properties o f  the membrane. 

In recent years ultrafiltration apparatus with pipe membrane elements and hollow fibers are widely used 

in the chemical, petroleum, food, biotechnology, and medical industries [1-3 ]. 

For determination of the optimal design and main parameters of ultrafiltration in pipe membranes and 

hollow fibers, it is necessary to have a clear understanding of the main mechanisms of the process. 

In the literature there is no adequate theoretical description of ultrafiltration in axisymmetric membrane 
elements. 

In the present article, on the basis of the semi-integral method suggested in [4 ], we consider concentration 

polarization in laminar ultrafiltration in cylindrical channels as a function of the selective properties of the 

membrane. 

The convective diffusion equation is written in a cylindrical system with the assumption that in 

ultrafiltration the thickness of the diffusion boundary layer is much smaller than the radius of the pipe. Then, 

introducing the new variable Y= R - r and taking only the main terms, we obtain the convective diffusion equation, 

which is written in dimensionless form as 

with the boundary conditions 

~oV0 w 

00 00 1 020 (1) 0 0 +  u - - -  v - 

Or 0f Or/ Pe Or/2 

1 00 
+ P e 0 r / - 0  ( r / = 0 ) ,  0 =  1 ( r / = 6 ) ;  (2) 

0 = 1  ( ~ = 0 ) ,  0 = 1  ( r = 0 ) .  (3) 

In [5 ] it is shown that for a dynamic problem with a low transmembrane velocity and a parabolic velocity 

profile at the inlet to the cylindrical channel, the following expressions can be used for the velocity components: 

u = (1 - 2 V ~ ) ( 4 r / -  2r/2); v =  V(1 + r / -  37/2+r/3). (4) 

The following remark is to the point. Because Pe >> Re, the hypothesis of quasisteadiness can be used in 

consideration of a dynamic problem. This means that at a given moment each steady-state velocity distribution has 

its own concentration distribution. 

Since the thickness of the diffusion layer is small, for a solution of diffusion problem (1)-(3), only the first 

terms can be taken in velocity distribution (4) 
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O0 O0 O ( 1 dO) (5) 
O--~-+(l-2V~)4r/O-O-~=~-r~ vO +-p--~e ~- ~ �9 

Use will be made of the methods ordinary for unsteady-state  problems when the unsteady-sta te  distribution 
is preset proceeding from a solution of the steady-state problem 

4 ( 1 - 2 V ~ ) r / O - ~ =  ~ -  vo + -p-~e- ~ �9 

As follows from equation (6), in the immediate vicinity of the membrane surface, i.e., at r/--, O, 

(6) 

~- v o + ~  =0. 

is valid. 

Integrating twice and using the first condition from (2), we can find the s teady-s ta te  concentration 
distribution at the membrane 

0 = 0 w [1 - ~o + ~o exp ( -  Pe Vr/) I. ( 8 )  

In view of Eq. (8) and physical considerations based on the boundary layer ideology, we can express the 

concentration distribution by the relation 

0 = I 0w (~) [1 - ~o + ~o exp ( -  Pe Vr/) l ,  0 _< r/ _< 3 (r ; (9) 

/ 1, ~ (~) < r/_< 1, 

where the unknown thickness of the diffusion boundary layer is obtained from the condition 

1 = 0  w [ 1 - ~ o + ~ o e x p ( - P e V r / ) ] ,  

i.e., 

1 vo w (10) 
(5 = ~-~e--e~ In I - (1 - ~ o )  0 w " 

In order to find the unknown concentration at the membrane 0w(r, ~), we use the integral mass balance 

equation. To do this, convective diffusion equation (1) is integrated across the boundary layer from 0 to ~ and 

boundary conditions (2) are used. Then, 

0 
0-~ f ( 0 -  1) dr/ + f u ( 0 -  1) d r /=  V [ 1 - ( 1 - ~ O )  0wl.  

o 0 

(11) 

Substitution of velocity (5) and concentration (9) distributions into Eq. (11) gives 

~-  f 0 w [1 - ~o + ~o exp ( -  PeVr/)l - 1) dr/ + 
0 

3 
+0-~f f 4 (1  - 2V~) r/(0 w [1 -~o + ~o exp ( -  P e V r / ) l -  1) dr/ = V I I  - (1 - ~O) 0wl.  (12) 

o 

Hence, upon integration with account of relation (10), we have 

- - - -  (0 w ( 1  - ~ o ) -  1) In 
Pe V Or 

- 1 + 0  w 
1 - ( 1  - ~o) o w 

+ 
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1 O [ ~o0 w 
- -  [ 4 ( 1 -  2V~)(O w -  1 - [ 1 -  (1 -~O) Ow]lO 

+ pe2V 20~ 1 - ( 1 - ~ o )  0 w 

1 ( 
- - ~  [ 1 - ( 1 - ~ o )  0 w] In I - (1--~o) 0 w = V[I - (1 -~o) 0 w]. (13) 

From physical considerations, an unsteady process can be considered as two limiting cases: absolutely 

unsteady and steady regimes. 

Consider the s teady-state  regime of concentration polarization. From equation (13) we have 

0V~5 4 ( 1 - 2 V / ~ ) ( 0  w -  1 - [ 1 - ( 1 - ~ O )  0w] ) I n  1 - ( 1 - ~ o )  0 w 

- ~ [ 1 - ( l - ~ , ) 0 w l  In 1 -  ~o) 0 w = P e 2 V  2 [ 1 - ( l - ~ P )  0w]. 

Integration of Eq. (14) is impossible in the general case. Let us consider some particular cases. 

Let 0w - 1. Then,  it can be expressed in the form 0w = 1 + e. As a result, 

(14) 

ln~pO w = l n ~ o ( 1  + e ) ,  l n ( l - ( 1 - ~ o )  Ow) = l n ~ o ( 1 - e ( 1 - ~ o ) / ~ , ) .  

The  logarithms are expanded into a power series in e, and with accuracy to e 3, we find from formula (14) 

de3(1-V~)dV~ =_~37,3pe2V2 [l_e(1;t~ 1 . (15) 

Let e (1 - ,p) /T << 1 (this can be done since the selectivity of ultrafiltration membranes is high). The  last expression 

is integrated under  the obvious condition e -- 0 at ~ = 0 

= ~o ~ Pe (16) 

The  radii of the pipes and hollow fibers used in laminar ultrafiltration are 10 .3  and 10 -4  m, the diffusion 

coefficient is 10 - l ~  m2/sec,  and the t ransmembrane flow velocity is 10 . 5  m/sec.  In this case for a pipe, PeV 

-- 10 2, and for a hollow fiber, 10. Since e < 1, relation (16) is satisfied at V~ << 1. Ignoring V~ in comparison with 

unity in the denominator ,  we find 

1 / 3  

When the terms in equation (14) that contain logari thms are small in comparison with 0 w - 1, for 

calculation of concentration polarization, we can use the relation 

d pe2V 2 dV~ [(1 - 2V'~) (0 w - l ) l -  4 [1 - ( 1  - ~o) Ow]. (18) 

With the boundary condition 0 = 1 at ~ = 0, its integration gives the solution 

I _ 8  
0 w = 1 - / o  pe2V 2 'I1 22j 

8 so)Lt~ y -  - so(l  - 2 V ~ )  ( 1 -  1 . (19) 
pe2V 2 
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Formula (19) shows that in laminar ultrafiltration pipe flow, there exist two basically different regimes. The  value 

of (I - ~o) can be small or large in comparison with the complex 8 /Pe2V 2 that characterizes the relation between 

convective and diffusion mass transfer. 

Consider the ultrafiltration regime 

(1 - 9O) << 8/PeZV 2 . (20) 

As was shown above, in the case of ultrafiltration in a pipe and in a hollow fiber PeV = 10-102,  condition (10) 

implies almost ideal selectivity of the membrane (~o ~ 1). Then,  it follows from (19) that 

V~ (PeV) 2 (21) 
0 w = l +  4 (1 - 2 ~ )  ' 

i.e., the dissolved compound concentration on the membrane grows continuously as the distance from the channel  

inlet increases. 

Now, we take again equation (17), assuming T = 1. Upon integration we obtain 

pe2 V2V~ (22) 
0 w - l n 0  w- l ( inOw)  2= 1 + 4(1 -2V~)" 

If 0w >> In 0w, which was assumed in derivation of formula (19), relation (22) becomes Eq. (21). 

The  opposite case of (1 - T) >> 8 / p e 2 v 2  is considered now. Under  this condition, it follows from (19) that 

the dissolved compound concentration on the membrane increases rapidly with the distance from the channel  inlet 

1 1 -9o(1 -2V~) 0-s~ 0 w -  1 - T  
(23) 

and reaches the limiting value 0 w -- 1/(1 - 9o), which remains constant in the other  part of the channel. 

Now, we consider unsteady filtration. From Eq. (13) we obtain the differential equation 

OVt (Ova(1-~o)- 1) In 1 - ( 1 - ~ , ) 0 w r  + 0 w r -  1 = P e V I l - ( 1 - g o )  0w~l. 

It cannot  be integrated in general form. Equation (24) will be analyzed in particular cases. For  0 w t -  1, i.e., 

0wt = 1 + e, we can restrict ourselves to the initial powers of the series In 9o0wt and In (1 - ( 1  - 9o)0wt in e. Then,  

dVr 29o2PeV 1 - 

Hence,  assuming e( 1 -  T)/9' << 1, we find 

Ova = 1 + 9o (2PeVVr) 1/2 . (26) 

If (1 - ~')0wt << 1, which, as is shown above, is valid when the condition (1 - 9o) << 8 / P e 2 V  2 is satisfied, 

from equation (24) we obtain 

0wr - In 0wr = 1 + PeVVt. (27) 

In the case of (1 -9o)>> 8 / p e 2 V  2, we consider the stage of the process in which in expression (24) the 

term that contains logarithm is negligible in comparison with Ova - 1, i.e., 

0 %  (28) 
o v r  - P e V  [1 - (1 - 9 o ) 0 w r ] .  
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Integrating this differential equation with the condition 0wr = 1 at r = 0, we find 

1 
Ow. r - , ~  [1 - 9' exp ( -  (1 - 9") PeVVrl .  (29) 

- w l  

Now, we estimate the time T s required for the concentration polarization to attain a s teady state in the case 

of ultrafiltration in pipes and hollow fibrrs. The time rs is determined from the condition 0w = 0wr. Then,  from 

relations (17) and (26), (22) and (27), (23) and (29) we obtain 

�9 s = ~ Pe~ , O w - l ;  

1 8 
r s -  - P e V ~ ,  ( 1 - 9 , ) > >  

4 pe2V 2 ' 

" / ' $  m 
PeV~ 8 

, ( 1 - 9 , ) < < - - .  
4 (1 - V~) Pe2V 2 

respectively. 

The  last formula is valid for channels with a moderate length. 

The  work was carried out with support from the Fundamental  Research Fund of the Republic of Belarus. 

N O T A T I O N  

= X / R ;  r 1 = Y / R ,  dimensionless longitudinal and transverse coordinates; u = Ux/Uo, v = uy/uo,  

dimensionless components of velocity vector; R, channel radius; uo, mean velocity at channel inlet; Re = u o R / v ,  

Reynolds number;  v, kinematic viscosity; Pe = u o R / D ,  diffusion Peclet number; D, diffusion coefficient; 0 = c /co ,  

dimensionless concentration of dissolved compound; co, concentration of dissolved compound at channel  inlet; 0w, 

dimensionless  concentra t ion of dissolved compound on membrane;  V = Vf/uo,  t r ansmembrane  velocity; 9,, 

membrane  selectivity; d~, th ickness  of diffusion b o u n d a r y  layer ;  Vf, f i l t rat ion velocity. Subscripts:  w, wall 

(membrane);  s, steady. 
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